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Learning related paradigms play an important role in shaping the
development and specificity of synaptic networks, notably by
regulating mechanisms of spine growth and pruning. The molec-
ular events underlying these synaptic rearrangements remain
poorly understood. Here we identify NO signaling as a key mediator
of activity-dependent excitatory synapse development. We find that
chronic blockade of NO production in vitro and in vivo interferes
with the development of hippocampal and cortical excitatory spine
synapses. The effect results from a selective loss of activity-mediated
spine growth mechanisms and is associated with morphological and
functional alterations of remaining synapses. These effects of NO
are mediated by a cGMP cascade and can be reproduced or pre-
vented by postsynaptic expression of vasodilator-stimulated phos-
phoprotein phospho-mimetic or phospho-resistant mutants. In vivo
analyses show that absence of NO prevents the increase in
excitatory synapse density induced by environmental enrichment
and interferes with the formation of local clusters of excitatory
synapses. We conclude that NO plays an important role in re-
gulating the development of excitatory synapses by promoting
local activity-dependent spine-growth mechanisms.

synaptic plasticity | spinogenesis | dendritic spines | VASP

Neuronal activity and experience critically control the de-
velopment and organization of synaptic networks by regu-

lating the mechanisms of synapse formation and elimination.
Sensory experience, motor training tasks, fear-conditioning, song-
learning in birds, or exposure to novel environments in rodents are
associated with major structural rearrangements of connectivity
(1–8). An interesting aspect of these structural rearrangements is
that they are spatially organized: the new spines formed as a result
of activity tend to grow in the vicinity of activated synapses and
repetitive learning promotes the formation of synaptic clusters (9–
11). Despite the importance of these mechanisms for the de-
velopment of brain circuits, the molecular events underlying these
activity-mediated structural rearrangements of connectivity re-
main still essentially unknown.
Here we tested whether the diffusible messenger nitric oxide

(NO) could contribute to these mechanisms. NO is produced at
excitatory synapses as a result of synaptic activation through the
close association of its synthesizing enzyme, neuronal nitric oxide
synthase (nNOS), with the postsynaptic density and NMDA
receptors (12–14). NO has thus been implicated in several
aspects of synaptic function and plasticity (15–18), notably as
a retrograde messenger regulating presynaptic properties, such
as synaptic vesicle recycling in terminals and growth and re-
modeling of presynaptic varicosities (19–22). At inhibitory syn-
apses in the ventral tegmental area, NO has even heterosynaptic
effects, mediating a form of GABA-mediated long-term poten-
tiation triggered by excitatory synapse activation (23). Studies of
nNOS-deficient mice further suggest an important role of NO in
cognitive functions and social behavior (24–26) and recent ge-
netic analyses have reported associations between genetic var-
iants of nNOS and schizophrenia (27, 28), suggesting a possible

developmental role of NO for brain circuit formation. Our study
provides direct evidence for such a role by demonstrating that
NO is required for activity-mediated synapse formation.

Results
NO Regulates Synaptic Network Development. We first examined
the role of NO in regulating the development of excitatory
synapses by chronically applying the NOS inhibitor L-NAME (L-
nitroarginine methyl ester) to hippocampal slice cultures [200
μM applied every day for 10 d, starting from day in vitro (DIV)1].
We used a 3D electron microscopic approach to assess spine
morphology and quantified synapse density by stereology. The
results illustrated in Fig. 1 show that L-NAME treatment had two
major effects: it significantly reduced the density of spine syn-
apses (0.41 ± 0.02 μm−3 vs. 0.83 ± 0.13 μm−3, n = 3 slices, P <
0.05) and modified their morphology. Remaining spines had
a larger spine volume, a larger postsynaptic density (PSD) area,
and more often showed complex PSD organizations (Fig. 1 and
Table S1). To confirm these observations under in vivo con-
ditions, we then treated rat pups with either saline, D-NAME (an
inactive enantiomer of L-NAME) or L-NAME. For this process,
rat pups were injected with 10 μL containing saline or saline with
D- or L-NAME at concentrations of 30 mg/kg body weight each
day between postnatal day (P) 7 and P17. The animals were then
killed and the hippocampi processed for EM analyses. These
experiments revealed very similar changes: the spine synapse
density decreased by 35% in L-NAME– but not D-NAME–treated
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rats [L-NAME: 0.95 ± 0.05 μm−3 vs. D-NAME: 1.35 ± 0.04 μm−3

and control (Ctrl): 1.42 ± 0.06 μm−3, n = 7–14, P < 0.0001].
Conversely, the spine volume and PSD area of the remaining
spines increased together with the proportion of spines showing
complex PSDs (Fig. S1 and Table S1). As a third approach to
assess the role of NO in the development of synaptic networks,
we analyzed nNOS knockout mice (nNOS-KO) (29). Fig. 2
shows 3D reconstructions of two dendritic segments obtained
from nNOS-KO and WT mice perfusion-fixed at P24. As illus-
trated, both the number of spine synapses and the size of spines
and PSDs were clearly different between nNOS-KO and WT
tissue. The difference in spine synapse density was already
present at P10 (0.16 ± 0.02 μm−3 vs. 0.34 ± 0.04 μm−3, n = 7, P <
0.05); it became very significant at P15 and P24 (Table S1) (P <
0.001) and a small difference persisted in adult mice at P41 (Fig.
2C and Table S1). These changes were again correlated with an
increase in spine size, in PSD area, and in PSDs with complex
shapes (Fig. 2 E and F, and Table S1). Note that this decrease in
spine synapse density was not compensated by shaft synapses
which remained a very low fraction of total synapses (Fig. 2C). In
addition, consistent with this decrease in synapse density, the
density of presynaptic boutons was reduced (Fig. 2G) (2.62 ±
0.09, WT, n = 12 vs. 2.00 ± 0.15, nNOS-KO, n = 10, P < 0.001)
and, conversely, the size of the remaining presynaptic terminals,
measured as the maximal diameter in the stack, was increased
(Fig. 2H) (0.352 ± 0.007 vs. 0.300 ± 0.007; n = 201 and 202;
P < 0.001).
The changes in synapse density were not associated with de-

tectable changes in the organization of the dendritic arboriza-
tion. Measuring the fractional area occupied by dendritic profiles
in EM fields randomly chosen in the CA1 stratum radiatum
showed no differences between WT and nNOS-KO mice (Fig. S2
A–C) (2,121 and 2,185 μm2 analyzed). Furthermore, a Sholl

analysis of CA1 pyramidal neurons reconstructed from control
and L-NAME–treated slice cultures showed no significant dif-
ferences in the total length of apical arborizations nor in the
length and distribution of dendritic segments as a function of the
distance from the soma (Fig. S2 D–F) (total length: Ctrl: 3,132 ±
224 μm; L-NAME: 2,893 ± 208 μm; P = 0.24). These results
therefore strongly support the idea that the loss of NO resulted
in a general decrease in the number of excitatory synapses per
neuron, and thus in a hypo-connectivity phenotype. Further-
more, these effects of NO blockade were not restricted to the
hippocampus. In nNOS-KO mice, layer 5 of the cingulate cortex,
a cortical region often implicated in schizophrenia pathology,
showed the same alterations of spine density and morphology,
indicating a more global implication of NO in cortical spino-
genesis (Fig. 2D) (0.95 ± 0.04 spines/μm3, n = 11 vs. 1.56 ± 0.05
spines/μm3, n = 10, P < 0.001).
At the functional level, these structural alterations in synapse

number and morphology resulted in detectable changes in ex-
citatory transmission and intrinsic cell properties. In comparison
with control slices, slice cultures chronically treated with L-NAME
showed significantly enlarged miniature excitatory current ampli-
tude, consistent with the increase in size of the remaining spine
synapses (13.1 ± 0.4 pA vs. 11.3 ± 0.4 pA, n= 23 and 19; P < 0.05)
(Fig. 3C). However, miniature current frequency was not signifi-
cantly reduced (Fig. 3D) (P = 0.22) and their kinetics was not
altered (rise time: 2.1 ± 0.07 ms vs. 2.2 ± 0.05 ms; half-width time:
14.0 ± 3.5 ms vs. 15.6+2.2 ms). Additionally we found no signif-
icant changes in input/output curves, facilitation ratio (Fig. S3 A
and B), or AMPA/NMDA ratio (Fig. 3 D and E), suggesting
preserved basal transmission properties. Analysis of intrinsic
properties of CA1 pyramidal neurons further showed a slightly
depolarized resting membrane potential (−56.1 ± 1.4 mV vs. −60.6 ±
1.3 mV, n = 11–13; P < 0.05), but a very significant increase in
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Fig. 1. Alteration of synaptic network development by chronic blockade of NO production in hippocampal organotypic slice cultures. (A and B) EM images
obtained from the CA1 stratum radiatum in a control slice culture (A) and in a slice culture treated for 10 d with 200 μM L-NAME, a NOS antagonist. Spine
synapses are marked with asterisks. (Scale bar, 0.5 μm.) (C) Illustration of representative 3D reconstructed spine synapses obtained from control (Upper, simple
PSD shown in red) and L-NAME–treated slice culture (Lower, complex PSD shown in red). (D) Decrease in spine synapse density produced by chronic L-NAME
treatment (n = 3 cultures, P < 0.05). (E) L-NAME treatment resulted in an increase in spine volume of remaining synapses (Ctrl: n = 294 spines, L-NAME: n = 100
spines, ***P < 0.001). (F) Increase in PSD area under the same conditions (***P < 0.001) (see also Fig. S1).
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input resistance (156 ± 5.4 vs. 128 ± 7.5 MOhm; n = 11–13; P <
0.01) and a preserved excitability to depolarizing current steps
applied under conditions of excitatory and inhibitory transmission
blockade (Fig. S3 C–E). Taken together, these results suggest
some adaptative mechanisms to chronic blockade of NO pro-
duction and are consistent with the existence of a hypo-connected
synaptic network, but containing more efficient synapses.

NO Controls Basal and Activity-Mediated Spine Growth. To un-
derstand the mechanisms underlying the decrease in synapse
density, we investigated how NO affected spine dynamics in
mRFP-transfected CA1 hippocampal neurons in slice cultures
using a repetitive imaging approach. Under basal conditions,
a fraction of spines is formed and eliminated every day (22.9 ±
1.7% and 17.0 ± 1.9%, n = 27) (Table S2), maintaining a rela-
tively stable number of synaptic contacts. When slice cultures

were treated with the NOS inhibitor L-NAME for 24 h (200 μM),
the fraction of newly formed spines decreased by 75% to 5.6 ±
1.1% (n = 16, P < 0.001), but the rate of spine elimination was
not modified (18.7 ± 1.8%, n = 16) (Fig. 4 A, C, and D). As
a result, spine density decreased by about 20% within 24 h (from
1.06 ± 0.02 μm−1 to 0.86 ± 0.02 μm−1, n = 27 and 16; P < 0.001)
(Fig. 4E). These effects were initiated quite rapidly, as analyses
carried out only 5 h after L-NAME treatment already indicated
a very significant decrease in spine growth mechanisms (new
spines formed at 5 h: Ctrl: 9.5 ± 1.8% vs. L-NAME: 0.7 ± 0.4%,
n = 6; P < 0.001). To further analyze this mechanism, we treated
slice cultures for 24 h with 2 mM 8-Br-cGMP (cGMP), a stable
cell-permeable analog of cGMP, which often contributes to NO
signaling. As shown in Fig. 4, cGMP produced the converse ef-
fect of L-NAME and greatly enhanced spine formation without
affecting spine loss (Fig. 4 and Table S2) (n = 8, P < 0.05). Note
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Fig. 2. Alterations of excitatory synapses development in nNOS-KO mice. (A) Illustration of two dendritic segments 3D reconstructed from EM serial sections
of the CA1 stratum radiatum of a WT mouse (P24). (B) A 3D reconstruction of two dendritic segments from a nNOS-KO mouse (P24). Note the larger spine
heads and PSD areas (red). (C) Changes in spine and shaft synapse density expressed per unit volume and observed during development in the hippocampus
of nNOS-KO and WT mice. Note that the decrease in spine synapse density is not compensated by shaft synapses. (D) Decrease in spine synapse density in the
cingulate cortex of P24 nNOS-KO mice (black bar) vs. WT mice. (E) Increase in the volume of spines in the hippocampal CA1 stratum radiatum of nNOS-KO vs.
WT mice (P24). (F) Increase in PSD area of spine synapses under the same conditions. (G) Decrease in the density of presynaptic boutons under the same
conditions. (H) Increase in the size of presynaptic boutons under the same conditions (black bars refer to nNOS-KO mice and gray bars to WT mice; ***P <
0.001, **P < 0.01, *P < 0.05; quantitative data are in Table S1).
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that L-NAME no longer blocked spine formation when slice
cultures were treated with cGMP, indicating that cGMP acted
downstream of NO production (n = 8). Finally, blockade of
cGMP-dependent protein kinase with Rp-8-cGMP (100 μM)
applied for 24 h reproduced the effects of L-NAME, thus con-
firming that NO acted through a cGMP signaling cascade (n = 8,
P < 0.001) (Table S1).
As spine turnover is regulated by neuronal activity, we then

tested whether the effect of NO was also activity-dependent. As
shown in Fig. 4F, blockade of neuronal and synaptic activity with
tetrodotoxin (TTX, 1 μm) or D-AP5 (50 μM) for 24 h markedly
reduced spine growth without affecting spine elimination, thus
reproducing the effects of L-NAME (Fig. 4F and Table S2) (n =
10 and 6, P < 0.01). Addition of L-NAME to TTX did not further
block spine growth (n= 8, P < 0.01), but the effect of TTX could
be reversed through a concomitant application of cGMP, in-
dicating that cGMP could reverse the effects of activity blockade
(n = 9, P < 0.01). Conversely, application of θ-burst stimulation
(TBS) to slice cultures greatly enhanced spine turnover over the
next 24 h, resulting both in an increased formation and increased
elimination of spines (Fig. 4F and Table S2) (n = 11, P < 0.001).
This increase in spine growth was again fully blocked by
L-NAME (n = 7, P < 0.001), but spine elimination remained
unchanged. The increased spine formation triggered by TBS was
previously found to preferentially occur in close proximity to
activated synapses (9). We therefore tested whether this local
spine growth triggered by TBS still occurred in the presence of
L-NAME (Fig. 4 G and H). For this process, we assessed the
probability for a new spine to grow less than 1 μm apart from a
preexisting one. To allow comparisons, we selected dendritic
segments of comparable densities for these experiments (density:
1.11 ± 0.08 μm−1 for control and 1.18 ± 0.09 μm−1 for L-NAME).
We compared three conditions: basal turnover under control
conditions, spine growth induced by TBS under control conditions,
and spine growth induced by TBS in the presence of L-NAME.

Under basal conditions, the probability of a newly formed spines
to grow close to a previously existing one was 0.53 ± 0.01 (Fig.
4H) (n = 57 spines, 11 cells). Applying TBS to Schaffer collat-
erals resulted in an increased spine growth over the next 24 h and
these newly formed spines showed a clear tendency to appear
close to preexisting spines (Fig. 4G) (probability: 0.76 ± 0.02,
n = 67 spines, 6 cells, P < 0.01). In contrast, application of TBS
in the presence of L-NAME resulted in a reduced number of new
spines and these spines showed no preferential growth close to
an existing spine (probability: 0.46 ± 0.07, n = 15 spines, 7 cells).

Effects of NO Are Mediated by the Phosphorylation of Postsynaptic
Vasodilator-Stimulated Phosphoprotein. To identify the mechanism
and site of action (pre- or postsynaptic) of NO, we focused on
possible downstream targets of cGMP-dependent protein kinase
(PKG), such as vasodilator-stimulated phosphoprotein (VASP),
a member of the Ena/VASP family, involved in the regulation of
the cytoskeleton and elongation of actin filaments (30–32). Nota-
bly VASP can be phosphorylated at two main sites, Ser157 and
Ser239 by PKG. Phosphorylation of these sites has been shown to
be important for the regulation of the cytoskeleton by VASP
(33). To test whether VASP phosphorylation could mediate the
effects of NO on spine growth, we used a mutation approach and
cotransfected hippocampal pyramidal neurons with mRFP and
EGFP-tagged constructs of either WT VASP, a phospho-resistant
mutant VASP (AAT-VASP), in which the two phosphorylation
sites Ser157 and Ser239 have been mutated into alanine, or a
phospho-mimetic mutant (DDT-VASP), in which the two phos-
phorylation sites have been mutated to aspartate (34). VASP is
highly expressed in dendrites and in spines (Fig. S4), as indicated
by transfections of EGFP-VASP. Furthermore, activation of slice
cultures with carbachol (10 μM, 1 h), a cholinergic agonist that
promotes rhythmic activity, leads to a significant increase in the
level of VASP phosphorylation that may last several hours after
treatment (Fig. S4). Analysis of spine dynamics in cells transfected
with the different VASP mutants showed that expression of WT
VASP or of the phospho-mimetic VASP mutant markedly en-
hanced spine growth mechanisms, reproducing the effect of TBS
or 8-Br-cGMP (Fig. 5 and Table S2) (n = 9, P < 0.001 and n = 9;
P < 0.01). Note that L-NAME became ineffective in blocking
spine growth when the phospho-mimetic mutant was expressed in
pyramidal neurons (n = 8, P < 0.01), indicating that DDT-VASP
acts downstream of NO and that the regulation of spine growth is
postsynaptic (Fig. 5D). In contrast, expression of the phospho-
resistant VASP mutant reproduced the effects of L-NAME and
strongly blocked spine growth mechanisms (n = 11, P < 0.001).
Note that spine growth was strongly inhibited by the phospho-
resistant mutant even in the presence 8-Br-cGMP (n = 11, P <
0.001), confirming the importance of VASP as a downstream
postsynaptic target of PKG. In addition, VASP phospho-mutants
only affected spine growth mechanisms and not spine elimination,
as it is the case for L-NAME or cGMP (Table S2).
We then examined further whether VASP phosphorylation

also contributed to the changes in spine growth mediated by
synaptic activity. For this process we applied TBS to neurons
transfected with either WT VASP or the phospho-resistant
mutant VASP-AAT. As shown in Fig. 5E, TBS-mediated spine
growth was fully blocked in AAT-VASP transfected cells (Table
S2) (n= 6, P < 0.001), whereas overexpression of WT VASP was
sufficient to reproduce the effects of TBS and no further increase
could be observed (n = 9, P < 0.05). Taken together, these
results suggest that postsynaptic VASP phosphorylation is suffi-
cient and necessary for activity-mediated spine growth.

NO Is Required for Enrichment-Induced Structural Plasticity and
Excitatory Synapse Clustering. We then wondered whether the
role of NO in regulating local spine growth could be implicated in
learning mechanisms under in vivo conditions. For this hypothesis,
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Fig. 3. Alterations of synaptic transmission in L-NAME treated hippocampal
slice cultures. (A) Illustration of mEPSCs recorded in CA1 pyramidal neurons
of control hippocampal slice cultures and slice cultures treated with L-NAME
(200 μM) between DIV1 and DIV10. (B) Increase in mEPSC amplitude in slice
cultures chronically treated with L-NAME vs. control slices (n = 21 and 18; *P <
0.05). (C) mEPSC frequency under the same conditions (n = 21 and 18; P =
0.22). (D) Illustration of AMPA/NMDA currents recorded at −70 mV and +40
mV in CA1 pyramidal neurons of control and L-NAME treated slice cultures.
(E) Absence of modifications of the AMPA/NMDA ratio under the same
conditions.
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we tested whether the synaptic rearrangements promoted by
experience, such as environmental enrichment, could be affected
by a deficit in NO. Previous work by different laboratories has
shown that exposure of mice to environmental enrichment
results in a significant and detectable increase in spine density
(35–37). We therefore tested whether these synaptic network
adaptations were still functional in NO-deficient mice. Young
mice (WT and nNOS-KO; P14) were either exposed for 10 d to
an enriched environment (EE) or maintained under conventional
housing conditions. We then proceeded to a morphological anal-
ysis of synapse density at the EM level using a stereological ap-

proach. As shown in Fig. 6, exposure of WT mice to EE for 10 d
resulted in a significant increase in spine density (WT-EE: 9.2 ±
0.2 μm−3, n = 10 vs. WT: 7.9 ± 0.3 μm−3, n = 13, P < 0.01). In
contrast, in nNOS-KO mice, this effect was fully blocked and the
spine density remained significantly lower than in WT mice (KO:
6.2 ± 0.1 μm-3, n = 11 vs. KO-EE: 6.5 ± 0.1 μm−3, n = 10).
While we were analyzing the 3D distribution of synapses in the

tissue, we were struck by the existence of small clusters of syn-
apses with several synapses lying close to each other [i.e., at
distances of 0.5–1 μm, which correspond to estimations of the
diffusion distance of NO generated at synaptic sites (22)] (Fig. 7
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A–C). We therefore wondered whether NO could be implicated
in the formation of these synaptic clusters. For this process, we
spotted the location of all excitatory synapses present in small
volumes of hippocampal stratum radiatum (48 μm−2 × 0.36 μm:
17.3 μm−3) (Fig. 7A) and calculated the fraction of synapses that
had a neighbor synapse at a distance less than 0.5 μm, using
a minimum spanning-tree algorithm. As shown in Fig. 7D, a rel-
atively high proportion of synapses have very close neighbors in
WT animals (43.2 ± 3.1%, n = 13). This fraction further
increases following exposure of WT mice to EE (50.6 ± 1.1%,
n= 11, P < 0.05). In nNOS-KO mice, the proportion of synapses
having a close neighbor was significantly reduced and no longer
changed after EE (KO: 34.6 ± 1.4, n = 12, P < 0.05; KO-EE:
32.0 ± 2.4, n = 14). Because this parameter is also sensitive to
variations in synapse density, we then proceeded to an analysis of
the radial distribution of synapses, calculating the proportion of
all synapses located within concentric circles around each syn-
apse, a parameter that is independent of synapse density (Fig. 7
B and C). For comparison, we also calculated these values using
simulated random distributions of synapses. As illustrated in
Fig. 7E, the fraction of synapses present at short distances (i.e.,
at less than 0.6 μm around each synapse) was significantly higher
in WT mice and in WT mice exposed to an enriched environ-
ment than in simulated random distributions. This effect was
specific for synapses located at short distances because the fraction

of synapses present slightly farther apart (i.e., 0.6–1 μm from
each synapse) were not different from random distributions (Fig.
7F). This result thus confirms the existence of a synapse clus-
tering effect in WT mice and mice exposed to EE. In contrast, in
nNOS-KO mice and nNOS-KO mice exposed to EE, the distri-
bution of synapses did not differ from random distributions at
all distances analyzed, thereby indicating that NO is required
for this clustering effect. Taken together, these results provide
evidence that blockade of NO production not only prevents
learning-mediated structural plasticity, but also affects the dis-
tribution of synapses in the tissue by interfering with synapse
clustering mechanisms.

Discussion
This study uncovers an important function of NO, which is to
promote activity-dependent spine formation during devel-
opment, and so contribute to the selectivity of excitatory synaptic
networks. Several recent in vivo studies have provided evidence
that a structural reorganization of synaptic connections is directly
associated with learning paradigms (8). In a series of elegant
experiments analyzing cortical plasticity during and following
learning of a motor dexterity task, Zuo’s and Gan’s laboratories
demonstrated that an increase in spine formation and a selective
stabilization of these new spines closely correlated with the ac-
quisition and retention of the task (3, 4). Similar findings have
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been reported in several other experimental or behavioral
paradigms (5, 7, 38, 39), and together with many other obser-
vations, these results have led to the concept that activity is a
major architect of the construction of synaptic networks during
development.
However, how exactly synaptic activity or experience drives

synapse formation remains poorly understood. The present
results support a scenario in which NO plays a major role. Ac-
tivation of the synapse, through an involvement of NMDA
receptors and calcium influx, could lead to the activation of
nNOS, closely associated to PSD-95 in the postsynaptic density.
This process would result in the release of NO and the activation
of a cGMP-PKG cascade in close-by dendrites and the phos-
phorylation of the cytoskeletal regulatory protein VASP. As
a result, active synapses would stimulate the growth of new
protrusions in their vicinity, promoting the formation of clusters
of synapses present at very short distances, as seen in WT mice
following environment enrichment. This mechanism could be
very important as it could favor the formation of synapses with
particularly active partners.
Several observations support this interpretation. First, the

close link between nNOS, PSD-95 and NMDA receptors is well
documented (12, 13, 40). Several studies have shown that pat-
terns of activity that trigger synaptic plasticity are able to pro-
mote NO release and that these effects can be blocked by the
NOS antagonist L-NAME (15, 22, 23, 41). Second, our study
provides direct evidence that interference with NO production
prevents the development of spine synapses under in vitro and in

vivo conditions, in the rat and mouse hippocampus, and also in
the cingulate cortex. It is interesting that the decrease in synapse
density produced by the loss of NO signaling was compensated
by an increase in size and efficacy of remaining synapses. Some-
how, this phenomenon shares similarities with the homeostatic
regulations implicated in synaptic scaling (42) and, together with
changes in intrinsic properties, could contribute to maintain a
given level of neuronal activity. Thus, the loss of NO signaling
not only affects the development of excitatory synapses, but
probably also modifies the distribution of synaptic weights within
the network. Third, the synaptic growth promoting effects of NO
are clearly linked to synaptic activity. Blockade of activity through
TTX or an NMDA receptor antagonist reproduced the effects
of L-NAME, whereas L-NAME prevented the increased spine
growth triggered by high frequency stimulation. Conversely, ac-
tivation of the NO-cGMP signaling cascade reproduced and
occluded the effects of high-frequency stimulation and its block-
ade prevented all effects of activity. Furthermore, the present in
vivo experiments clearly show that experience-mediated spine
formation is fully prevented in nNOS-KO mice, providing an ad-
ditional link between neuronal activity, NO signaling, and spine
growth mechanisms.
At the molecular level, the mechanisms through which NO

controls spine growth appear to mainly involve a postsynaptic
regulation of the actin cytoskeleton through a cGMP-PKG cas-
cade. This finding is consistent with many other studies that have
identified guanylyl cyclase and cGMP formation as a main target
of NO signaling (22, 43, 44). Our data further indicate that the
effect of NO on spine growth is mediated through the phos-
phorylation of VASP. VASP regulates actin polymerization in
a phosphorylation-dependent manner and has been implicated in
neurite elongation and spine formation (30–34, 45). Our results
with the VASP phospho-mutants further identify VASP phos-
phorylation as a key mechanism for activity-dependent spine
formation, providing evidence that VASP phosphorylation is
both sufficient and necessary to mediate the effects of synaptic
activity on spine growth. Additionally, these experiments show
that the regulation of spine growth by activity is mainly operated
by postsynaptic mechanisms. This finding is consistent with
experiments showing that glutamate, when applied locally, can
rapidly trigger the growth of new spines and the formation of
synapses (46, 47). It could be argued that it is glutamate spillover
that contributed to spine growth in our experiments. However,
the effect of glutamate on spine formation occurred within sec-
onds (46, 47), but the effect of activity on spine formation
develops over minutes to hours when glutamate is no longer
present (9). In addition, glutamate is the main trigger for the
formation of NO and thus the two effects could very well be
linked, with fast acting glutamate activating a longer-acting NO
signaling pathway. It is also very likely that other mechanisms
implicated in the regulation of the actin cytoskeleton could
contribute to these effects. Recent data have, for example, im-
plicated Rho-GTPases and PAK signaling in the control of ac-
tivity-dependent spine formation (48). Another interesting aspect
of NO is that, although it promotes spine growth as shown here, it
can also promote the growth and differentiation of new pre-
synaptic boutons (19, 20, 45, 49). Consistent with this finding,
nNOS-KO mice also showed a major decrease in presynaptic
bouton density and a correlated increase in terminal size. NO
might therefore be the ideal molecule able to simultaneously act
pre- and postsynaptically to promote synaptic contact formation.
This dual activity-dependent growth promoting effect could be
critically important during development to allow synapse for-
mation to preferentially occur between active partners.
Taken together, these results indicate that NO produced by

activated synapses can promote the growth of new spines in a
small volume of around 1–1.5 μm in diameter around a synapse.
This result can favor a mechanism of activity-dependent spine
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clustering and also enhance the probability that these new syn-
apses target active axons. NO would thus represent a critical
messenger to ensure a proper development of excitatory synaptic
networks through activity-related rewiring. This unique role of
NO could also account for the reported association between
nNOS genetic variants and schizophrenia (28). Interestingly,
a recent imaging study in humans expressing a polymorphism of
nNOS associated with schizophrenia shows that they exhibit gray
matter volume alterations and cognitive deficits (50).

Materials and Methods
Organotypic Cultures, Constructs, and Confocal Imaging. Organotypic hippo-
campal slice cultures were prepared from 6- to 7-d-old rat pups, as previously
described (51). To analyze the developmental effects of loss of NO, slice
cultures were treated with L-NAME (200 μM for 10 d starting on DIV1). To
analyze spine dynamics, the slices were transfected or cotransfected at DIV8
with different constructs using a biolistic technique (hand-held Gene Gun;
DNA-coated gold microcarriers; 1.6 μm; Bio-Rad Laboratories), according to
the instructions of the manufacturer. WT VASP-SST, Ser phosphorylation-
resistant mutant VASP-AAT (S157A/S239A), and Ser phosphorylation-mimetic

mutant VASP-DDT (S157D/S239D) were introduced in the expression vector
pEGFP-C1, as previously described (34). These constructs were a generous
gift of David B. Pearse (Johns Hopkins Bayview Medical Center, Baltimore,
MD). Transfected fluorescent cells were used for repetitive confocal imaging
experiments beginning from the fourth day after transfection, and spine
turnover analysis was carried out as previously described (9). Pharmacolog-
ical treatments for spine dynamics were carried out at DIV12–13. In all cases,
the drugs were added to the culture medium 30 min before the first con-
focal observation to allow penetration into the cultures, confocal imaging
was carried out in the presence of the drugs, and the drugs were maintained
for the next 24 h.

Mice. The experimental protocols were reviewed and approved by the Ethics
Committee of the University Medical Center of Geneva, by the Cantonal
Veterinary Office, Geneva, Switzerland, and by the Cold Spring Harbor
Laboratory Animal Use and Care Committee. The nNOS-null mouse mutant
line KOex6 was generated by targeting the essential heme-binding site of the
nNOS enzyme, leading to complete loss-of-function mutant mice (29). Nei-
ther nNOS mRNA, nor nNOS protein, nor nNOS activity was detected in these
loss-of-function mutant mice.
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Animals were genotyped by PCR analysis of mouse tail DNA by using two
pairs of primers specific to one of each: the WT allele (5′-GGCTCATTGA-
CAACTCCTGCT-3′ and 5′-ATGTGGGCCTTGGAGCCAAAC-3′, GenBank acces-
sion no. AF534820) or to the neomycin phosphotransferase gene of the
KOex6 allele (5′ -TGCCGAGAAAGTATCCATC-ATGGCTGATGC-3′ and 5′-CAGAA-
GAACTCGTCAAGAAGGCGATA-GAAGG-3′). The nNOS-null mouse mutant line
KOex6 was maintained at the Cold Spring Harbor Laboratory Animal care fa-
cility (Laboratory of Animal Resources) in mouse microisolator cages. nNOS−/−

mice and their WT littermates were provided with liquid chow and diet gel with
ad libitum access to water. Use of animals was reviewed and approved by the
Cold Spring Harbor Laboratory Animal Use and Care Committee.

Electrophysiology. For electrophysiological recordings, organotypic slice cul-
tures were continuously perfused (2–2.5 mL/min) with a solution containing:
NaCl 124 mM, KCl 1.6 mM, CaCl2 2.5 mM, MgCl2 1.5 mM, NaHCO3 24 mM,
KH2PO4 1.2 mM, Gabazine (SR-95531) 0.01 mM, glucose 10 mM, ascorbic acid
2 mM; saturated with 95% (vol/vol) O2 and 5% CO2 (pH 7.4; temperature 31 °
C). TTX (1 μM) was added to the perfusion solution for spontaneous excit-
atory miniature recordings (mEPSC). L-NAME (200 μM) was added to the
perfusion medium while recording from the cultures chronically treated
with L-NAME.

In slice cultures, TBS was carried out by placing a stimulation electrode in the
CA3 area and recording evokedfield potentials in the CA1 area. TBS consisted of
five bursts at 5 Hz with each burst composed of four pulses at 100 Hz. This
pattern was applied twice at 10-s intervals and then the slices were put back in
the incubator. Input-output curves were generated by recording excitatory field
potentials in the stratum radiatum of slice cultures and applying stimulations of
increasing intensity to a group of CA3 neurons. Facilitation was assessed by
measuring the ratio of slopes of excitatory postsynaptic potentials evoked by
paired stimulations of varying interpulse intervals (30, 50, 100, and 150 ms).

Whole-cell recordings were carried out using patch pipettes filled with
a solution containing: 125 mM CsMeSO3, 10 mM Hepes, 5 mM EGTA, 2 mM
MgCl2, 5 mM QX-314, and 4 mM MgATP. To induce evoked EPSCs, a metallic
stimulating electrode placed in the stratum radiatum at about 300 μm from
the recorded cell soma. To avoid epileptical activity, a cut was made be-
tween the CA3 and CA1 region and NBQX (0.3 μM) was added to the per-
fusion solution. Measurements were done at −70 and 40 mV holding
potential for AMPA- and NMDA-mediated currents, respectively. Recordings
were obtained using an Axopatch 200B (Molecular Devices), filtered at
2 kHz, and digitized at 5–10 kHz and stored on hard disk. Data acquisition
and analysis were performed using pClamp 9.

Custom written software (Detector, courtesy J. R. Huguenard, Stanford
University, Stanford, CA) was used for analyzing mEPSC events. Briefly, in-
dividual events were detected with a threshold-triggered process from
a differentiated copy of the real trace. Detection criteria (threshold and
duration of trigger for detection) were adjusted to ignore slow membrane
fluctuations and electric noise, while allowing maximal discrimination of
sEPSCs. For determining AMPA/NMDA ratios, the NMDAR-mediated com-
ponent of evoked EPSCs was measured as the EPSC amplitude at +40 mV
recordings at 200 ms after stimulation, when the AMPAR-mediated com-
ponent has decayed back to baseline. Membrane potential, input membrane
resistance and neuronal excitability were measured under whole-cell patch
configuration, with excitatory and inhibitory transmission blocked by D-AP5
(50 μM), DNQX (10 μM), and Gabazine (10 μM), and with a potassium glu-
conate-based internal solution.

Morphology and Electron Microscopy. Slice cultures or vibratome cut slices
from perfusion-fixed brains were embedded in EPON, cut for ultrathin serial
sections, and collected on single-slot Formvar-coated grids according to
standard procedures (20). Images of the neuropil from the middle portion of
CA1 stratum radiatum or from the cingulate cortex layer V were taken at
a magnification of 9,700× using a transmission electron microscope Tecnai
G212 (FEI Company) equipped with digital camera (Mega View III; Soft Im-
aging Systems). Digital serial electron micrographs were aligned using
Photoshop software (Adobe). Three-dimensional reconstructions as well as
surface, volume, and length measurements were carried out using Neuro-
lucida software (v6.02; MicroBrightField).

For serial EM, ribbons of up to 300 sections were cut in the middle portion
of the apical arborization of CA1 pyramidal neurons (stratum radiatum) and
collected on single-slot grids. Spine synapses were analyzed and recon-
structed in randomly selected volume samples obtained in the places devoid
of big processes and cell bodies. On EM images, spine synapses were dis-
tinguished by the presence of a spine head with a PSD facing a presynaptic
bouton. Complex PSDs were defined by the presence of a discontinuity on
a single section. Presynaptic terminals were identified by the presence of an

enlargement of the axonal shaft containing synaptic vesicles and facing at
least one PSD. The density of spine synapses was estimated using the physical
disector method (52) on consecutive serial sections, as previously described
(20). Three-dimensional illustrations were made with the software Reconstruct
developed by J. C. Fiala and K. M. Harris (www.bu.edu/neural/Reconstruct.
html) followed by color rendering with 3D Studio Max (Autodesk).

The dendritic arborization of CA1 pyramidal neurons in organotypic slice
cultures was analyzed by taking confocal images of mRFP-transfected cells.
Apical dendritic arbors were then outlined on stacks of images and analyzed
using Neurolucida software. To assess the fractional area of dendritic profiles,
we analyzed randomly chosen CA1 neuropil fields obtained by the alignment
of four (2 × 2) overlapping electron micrographs taken at a magnification of
9,700× with a Tecnai electron microscope. A total of eight neuropil fields
from two P24 WT mice and eight neuropil fields from two P24 nNOS-KO
mice, with total areas of 2,121 μm2 and 2,185 μm2, respectively, were ana-
lyzed using Neurolucida software. The total area of all dendritic profiles in
a field was calculated and normalized to the total area of the respective field.

EE Experiments. P14 nNOS−/− pups and their WT littermates were exposed
together with their mothers to EE conditions for 10 d. Pups were tattooed and
genotyped in the first week after their birth. The EE consisted of a rat
microisolator cage (much bigger size than regular mouse microisolator cage)
with many different additional preliminary autoclaved objects inside the cage,
such as running wheel, mouse igloo, and also plastic and paper tunnels, plastic
laboratory grids, holders, tubes, lids, and so forth. The objects in the cage were
changed daily. Control nNOS−/− and WT pups were raised with their mother
under standard housing conditions for the same duration (P14–P24) After 10 d,
all nNOS−/− and WT pups of control and EE groups were perfused with 2%
PFA/3%GA in 0.1 M Phosphate buffer (pH 7.4), postfixed with the same so-
lution overnight at 4 °C, and processed for electron microscopy.

Analysis of Spatial Arrangement of Synapses. The spatial distribution of syn-
apses was analyzed in small sampling windows (8 × 6-μmarea, six consecutive
aligned sections, 0.36 μm of total thickness; total volume: 17.28 μm3) using
minimum spanning tree (MST) and radial distribution function (RDF) algo-
rithms. MST is the shortest network of line segments that interconnects a set
of given points without a closed path. MST analysis, carried out using custom
written software, included all dots occurring within an individual sampling
window. The RDF algorithm was integrated in custom software written in
Delphi (v7, Borland Software) and was used to describe the probability of
a neighbor-synapse to occur close to the reference one. Every spine synapse
in the sampling window was marked with a dot in the middle of its PSD
using Neurolucida software thus allowing to represent the spatial pattern of
spine synapse distribution on a 2D plane. The coordinates of the dots were
measured with UTHSCSA ImageTool software (v3, University of Texas, San
Antonio, TX) using the point tool. One by one, all of the dots representing
synapses in the central part of the sampling window were considered as
reference ones. We measured the number of the dots that occurred within
concentric annuli centered on the reference dot and defined by widths of
0.2 μm. The number of dots present in annuli at increasing distances from
the reference dot was counted and normalized to the total number of dots
in the sampling window. In total, a central circle and four annuli were
analyzed representing a total area of 1 μm in radius corresponding to the
estimated diffusion distance for NO. In RDF analysis, the dots found within
0.5-μm-wide edge zone all around the sampling window were not consid-
ered as reference dots to avoid edge effects. The same procedure was ap-
plied to the simulated uniform random distributions of 60 dots within
sampling windows of the same size (n = 14 simulated distributions).

Statistical Analyses. All data are presented as mean ± SEM, and comparisons
were made using a two-tailed Student t test, unless otherwise indicated.

SI Material. Fig. S1 shows the alterations of synaptic network development
produced by chronic blockade of NO production in rat pups. Fig. S2 shows
that loss of NO signaling did not affect the length and distribution of apical
dendritic arbors. Fig. S3 shows the changes in excitatory transmission and
intrinsic cell properties produced by L-NAME treatment. Fig. S4 provides
evidence for activity-dependent VASP phosphorylation. Table S1 provides all
quantitative values and statistical data related to the ultrastructural EM
analyses of the effects of blocking NO production on synapse morphology.
Table S2 provides all quantitative values and statistical data related to the
spine dynamics analyses.
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